Research on Quantitative Evaluation of Artificial Intelligence Policy Texts in the Yangtze River Delta Region

ZHOU Ying, YANG Danjie, JIANG Mei, ZHAO Xiaochun

Scientific Information Research ›› 2025, Vol. 7 ›› Issue (2) : 13-22.

PDF(3357 KB)
PDF(3357 KB)
Scientific Information Research ›› 2025, Vol. 7 ›› Issue (2) : 13-22. DOI: 10.19809/j.cnki.kjqbyj.2025.02.002

Research on Quantitative Evaluation of Artificial Intelligence Policy Texts in the Yangtze River Delta Region

  • ZHOU Ying, YANG Danjie, JIANG Mei, ZHAO Xiaochun
Author information +
History +

Abstract

[Purpose/significance]The quantitative evaluation of existing effective artificial intelligence (AI) policies aims to provide reference for government department to formulate scientific and reasonable AI policies and promote the development of AI. [Method/process]Taking 10 AI policies in the Yangtze River Delta region from 2015 to 2024 as the research samples, the text mining method is used to construct the evaluation index system of AI policies in the Yangtze River Delta region, and conduct quantitative evaluation by combining the PMC index model. [Result/conclusion]The study found that from a macro policy text perspective, the average PMC index of the 10 AI policy samples in the Yangtze River Delta region was 7.11, indicating that the overall policy design was scientifically rational. From a micro policy text perspective, there were significant differences in the levels of AI policy texts in the Yangtze River Delta region. Based on the research conclusions, targeted policy improvement suggestions are proposed in terms of expanding the scope of policy targets, establishing a policy evaluation system, adjusting policy directions, and implementing policies tailored to local conditions.

Key words

artificial intelligence / policy evaluation / PMC index model

Cite this article

Download Citations
ZHOU Ying, YANG Danjie, JIANG Mei, ZHAO Xiaochun. Research on Quantitative Evaluation of Artificial Intelligence Policy Texts in the Yangtze River Delta Region[J]. Scientific Information Research, 2025, 7(2): 13-22 https://doi.org/10.19809/j.cnki.kjqbyj.2025.02.002

References

[1] 郦全民.人工智能在生产力中的角色[J].华东师范大学学报(哲学社会科学版),2023,55(05):6-12,170.
[2] 国务院.国务院关于印发《新一代人工智能发展规划》的通知[EB/OL].(2017-07-08)[2024-04-11].https://www.gov.cn/gongbao/content/2017/content_5216427.htm.
[3] 中国信息通信研究院.人工智能白皮书(2022年)[EB/OL].(2022-04-12)[2024-04-11].http://www.caict.ac.cn/kxyj/qwfb/bps/202204/t20220412_399752.htm.
[4] 安俞静,袁丰,孙伟,等.长三角科技创新平台布局时空演变及其影响因素[J].地理科学,2023,43(12):2173-2182.
[5] 刘亭立,傅秋园.绿色能源产业创新政策的量化评价与优化路径探究[J].中国科技论坛,2018(10):82-92.
[6] BIGMAN S K.Evaluative Research:Principles and Practice in Public Service and Social Action Programs,By Edward A.Suchman(Book Review)[J].Journal of Leisure Research,1969,1(12):209-211.
[7] POLAND O F.Program evaluation and administrative theory[J].Public Administration Review,1974,34(04):333-338.
[8] 陈婧嫣,姜李丹,薛澜.跨国比较视阈下的人工智能政策:目标、理念与路径[J].科学学与科学技术管理,2021,42(03):87-100.
[9] 沙德春,荆晶.中美人工智能产业国家顶层政策比较研究[J].科学管理研究,2021,39(03):154-162. 
[10] 单晓红,何强,刘晓燕,等.“政策属性—政策结构”框架下人工智能产业政策区域比较研究[J].情报理论与实践,2021,44(03):194-202.
[11] 费艳颖,刘彩薇.负责任创新视角下我国人工智能产业政策的解构与重构[J].情报杂志,2021,40(07):45-51,57.
[12] 陈艳霞,张鹏.人工智能产业政策的创新促进效应:来自企业专利数据的证据[J].现代经济探讨,2024(03):69-79,132.
[13] 金陈飞,吴杨,池仁勇,等.人工智能提升企业劳动收入份额了吗?[J].科学学研究,2020,38(01):54-62.
[14] DAI S L,ZHANG W M,LAN L H.Quantitative evaluation of China's ecological protection compensation policy based on PMC index model[J].International Journal of Environmental Research and Public Health,2022,19(16):10227.
[15] RUIZ E M A,YAP S F,NAGARAJ S.Beyond the Ceteris Pari-bus Assumption:Modeling Demand and Supply Assuming Omnia Mobilis[J].International Journal of Economics Research,2008,5(02):185-194.
[16] 谢昕莹,王小林.中国5G战略性新兴产业政策演进及内容评价[J].科学管理研究,2024,42(03):45-52.
[17] ESTRADA M A R.Policy Modeling:Definition,classification and evaluation[J].Journal of Policy Modeling,2011,33(04):523-536.
[18] 张永安,郄海拓.国务院创新政策量化评价:基于PMC指数模型[J].科技进步与对策,2017,34(17):127-136.
[19] 陈美,何祺.基于特征分析的政府数据分类分级政策量化评价[J].情报资料工作,2024,45(01):78-88.
[20] 何林莹,马海群.地方公共数据政策量化评价研究:基于PMC指数模型[J].现代情报,2023,43(08):14-26.
[21] 高秀娟,彭春燕.我国人工智能政策特征与PMC指数模型量化评价研究[J].科技管理研究,2022,42(21):56-65.
[22] 方思越,刘清.政策文献量化研究中的PMC指数模型应用述评[J].现代情报,2024,44(04):168-176.
[23] 蔡冬松,柴艺琳,田志雄.基于PMC指数模型的吉林省数字经济政策文本量化评价[J].情报科学,2021,39(12):139-145. 
[24] ZHAO X C,JIANG M,WU Z J,et al.Quantitative evaluation of China's energy security policy under the background of intensifying geopolitical conflicts:Based on PMC model[J].Resources Policy,2023,85(Pt.A):104032-104041.
PDF(3357 KB)

52

Accesses

0

Citation

Detail

Sections
Recommended

/